Dr. Lennard Kamenski

Author profile

Scopus AMS MathSciNet Google Scholar arXiv

Books

  1. Numerical Geometry, Grid Generation and Scientific Computing
    V. A. Garanzha, L. Kamenski, and H. Si (Eds.),
    Lecture Notes in Computational Science and Engineering, vol. 131 (2019),
    Springer International Publishing.

Research articles

  1. L. Kamenski:
    On the smallest eigenvalue of finite element equations with meshes without regularity assumptions,
    Submitted for publication, arXiv:1908.03460.
  2. K. Gärtner and L. Kamenski:
    Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method,
    Comput. Math. Math. Phys. 59.12 (2019), pp. 1930–1944, arXiv:1905.01738v2.
    Зачем нужны сетки Вороного–Делоне? Основные свойства метода конечных объемов с использованием ячеек Вороного
    Ж. вычисл. матем. и матем. физ. 59.12 (2019), с. 2007–2023, arXiv:1905.01738v2.
  3. K. Gärtner and L. Kamenski:
    Why do we need Voronoi cells and Delaunay meshes?
    Numerical Geometry, Grid Generation and Scientific Computing (NUMGRID-2018),
    Lect. Notes Comput. Sci. Eng. 131 (2019), pp. 45–60, Springer, Cham, arXiv:1905.01738v1.
  4. W. Huang, L. Kamenski, and J. Lang:
    Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes
    J. Comput. Appl. Math. (2019), 112497, arXiv:1703.06463.
  5. F. Dassi, L. Kamenski, P. Farrell, and H. Si:
    Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction
    Comput.-Aided Des. 103 (2018), pp. 2–13, arXiv:1703.07007.
  6. W. Huang and L. Kamenski:
    On the mesh nonsingularity of the moving mesh PDE method
    Math. Comp. 87 (2018), pp. 1887–1911, arXiv:1512.04971.
  7. F. Dassi, L. Kamenski, and H. Si:
    Tetrahedral mesh improvement using moving mesh smoothing and lazy searching flips
    Procedia Eng. 163 (2016), pp. 302–314, WIAS Preprint 2270.
    IMR 2016 Best Technical Paper Award.
  8. W. Huang, L. Kamenski, and J. Lang:
    Stability of explicit one-step methods for P1-finite element approximation of linear diffusion equations on anisotropic meshes
    SIAM J. Numer. Anal. 54.3 (2016), pp. 1612–1634, WIAS Preprint 1869, arXiv:1602.08055.
  9. W. Huang, L. Kamenski, and J. Lang:
    Stability of explicit Runge-Kutta methods for high order FE approximation of linear parabolic equations
    Numerical Mathematics and Advanced Appllications — ENUMATH 2013,
    Lect. Notes Comput. Sci. Eng. 103 (2015), pp. 165–173, Springer, Berlin, WIAS Preprint 1904, arXiv:1908.05374.
  10. W. Huang, L. Kamenski, and R. D. Russell:
    A comparative numerical study of meshing functionals for variational mesh adaptation
    J. Math. Study 48.2 (2015), pp. 168–186, WIAS Preprint 2086, arXiv:1503.04709.
  11. W. Huang and L. Kamenski:
    A geometric discretization and a simple implementation for variational mesh generation and adaptation
    J. Comput. Phys. 301 (2015), pp. 322–337, WIAS Preprint No. 2035, arXiv:1410.7872.
  12. L. Kamenski and W. Huang:
    A study on the conditioning of FE equations with arbitrary anisotropic meshes via a density function approach
    J. Math. Study 47.2 (2014), pp. 151–172, arXiv:1302.6868.
  13. L. Kamenski and W. Huang:
    How a nonconvergent recovered Hessian works in mesh adaptation
    SIAM J. Numer. Anal. 52 (4) (2014), pp. 1692–1708, arXiv:1211.2877.
  14. L. Kamenski, W. Huang, and H. Xu:
    Conditioning of finite elements equations with arbitrary anisotropic meshes
    Math. Comp. 83 (2014), pp. 2187–2211, arXiv:1201.3651.
  15. W. Huang, L. Kamenski, and J. Lang:
    Adaptive finite elements with anisotropic meshes
    Numerical Mathematics and Advanced Appllications 2011 (2013), pp. 33–42, arXiv:1201.4090.
  16. L. Kamenski:
    A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the FE method
    Eng. Comput. 28.4 (2012), pp. 451–460, arXiv:1106.6031.
  17. W. Huang, L. Kamenski, and J. Lang:
    A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
    J. Comput. Phys. 229.6 (2010), pp. 2179–2198, TU Darmstadt Preprint 2570 (2008) , arXiv:1908.04242.
  18. L. Kamenski:
    A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the FE method
    Proceedings of the 19th International Meshing Roundtable (2010), pp. 297–314, eprint (pdf).
    Corrigendum: p. 13, Sect. 5, \(\theta\) in the diffusion matrix \(\mathbb{D}\): correct is \(\theta = \pi \sin x \cos y\), not \(\pi/4\)).
  19. W. Huang, L. Kamenski and X. Li:
    Anisotropic mesh adaptation for variational problems using error estimation based on hierarchical bases
    Canad. Appl. Math. Q. 17.3 (2009), pp. 501–522, arXiv:1006.0191.

Theses

Miscellaneous