Dr.-Ing. Klaus Gärtner

Author profile

Scopus AMS MathSciNet

Selected research articles

  1. K. Gärtner and L. Kamenski:
    Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method
    Comput. Math. Math. Phys. 59 (2019), pp. 1930–1944, arXiv:1905.01738v2.
    Зачем нужны сетки Вороного–Делоне? Основные свойства метода конечных объемов с использованием ячеек Вороного
    Ж. вычисл. матем. и матем. физ. 59 (2019), с. 2007–2023, arXiv:1905.01738v2.
  2. K. Gärtner and L. Kamenski:
    Why do we need Voronoi cells and Delaunay meshes?
    Numerical Geometry, Grid Generation and Scientific Computing (NUMGRID-2018),
    Lect. Notes Comput. Sci. Eng. 131 (2019), pp. 45–60, arXiv:1905.01738v1.
  3. D. Peschka, M. Thomas, A. Glitzky, R. Nürnberg, K. Gärtner, M. Virgilio, S. Guha, T. Schroeder, G. Capellini, and Th. Koprucki:
    Modeling of edge-emitting lasers based on tensile strained germanium microstrips
    IEEE Photonics J. 7.3 (2016), pp. 1–15.
  4. A. Fischer, Th. Koprucki, A. Glitzky, M. Liero, K. Gärtner, J. Hauptmann, S. Reineke, D. Kasemann, B. Lüssem, K. Leo, and R. Scholz:
    OLEDs: light-emitting thin film thermistors revealing advanced self-heating effects
    Organic Light Emitting Materials and Devices XIX, vol. 9566 (2016), pp. 65–71.
  5. K. Gärtner:
    Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions
    J. Comput. Electron. 14.3 (2015), pp. 773–787, WIAS Preprint 2053.
  6. D. Peschka, M. Thomas, A. Glitzky, R. Nürnberg, K. Gärtner, M. Virgilio, S. Guha, T. Schroeder, G. Capellini, and Th. Koprucki:
    On device concepts for CMOS-compatible edge-emitters based on strained germanium
    2015 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 129–30.
  7. A. Fischer, Th. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky, and R. Scholz:
    Feel the heat: nonlinear electrothermal feedback in organic LEDs
    Adv. Funct. Mater. 24 (2014), pp. 3367–3374, WIAS Preprint 1839.
  8. C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner:
    An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization
    SIAM J. Sci. Comput. 36.2 (2014), pp. C139–C162.
  9. Th. Koprucki, M. Kantner, J. Fuhrmann, and K. Gärtner:
    On modifications of the Scharfetter- Gummel scheme for drift-diffusion equations with Fermi-like statistical distribution functions
    2014 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 155–156.
  10. Th. Koprucki and K. Gärtner:
    Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Opt. Quantum Electron. 45.7 (2013), pp. 791–796, WIAS Preprint 1738.
  11. A. Glitzky,K. Gärtner, J. Fuhrmann, Th. Koprucki, A. Fischer, B. Lüssem, K. Leo, and R. Scholz:
    Electro-thermal modeling of organic semiconductors describing negative differential resistance induced by self-heating
    2013 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 77–78.
  12. Th. Koprucki and K. Gärtner:
    Generalization of the Scharfetter-Gummel scheme
    2013 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 85–86.
  13. A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, Th. Koprucki, K. Gärtner, and A. Glitzky,
    Self-heating, bistability, and thermal switching in organic semiconductors
    Phys. Rev. Lett. 110.12 (2013), 126601, WIAS Preprint 1735.
  14. A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, Th. Koprucki, J. Fuhrmann, K. Gärtner, and A. Glitzky,
    Self-heating effects in organic semiconductor crossbar structures with small active area
    Org. Election. 13.11 (2012), pp. 2461–2468, WIAS Preprint 1693.
  15. K. Gärtner, H. Si, A. Rand, and N. Walkington:
    3D Delaunay mesh generation
    Combinatorial Scientific Computing,
    Chapman & Hall/CRC Comput. Sci. Ser. CRC Press (2012), pp. 299–319.
  16. Th. Koprucki and K. Gärtner:
    Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    2012 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 103–104.
  17. K. Gärtner:
    Charge transport in semiconductors and a finite volume scheme
    Finite Volumes for Complex Applications VI. Problems & Perspectives.
    Springer Proc. Math. 4 (2011), pp. 513–522.
  18. H. Si and K. Gärtner:
    3D boundary recovery by constrained Delaunay tetrahedralization
    Internat. J. Numer. Methods Engrg. 85.11 (2011), pp. 1341–1364, WIAS Preprint 1530.
  19. K. Gärtner:
    3D simulations of Si-detectors for high energy physics and astronomy
    Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems — MIXDES 2010, pp. 39–42.
  20. J. Becker, K. Gärtner, R. Klanner, and R. Richter:
    Simulation and experimental study of plasma effects in planar silicon sensors
    Nucl. Instrum. Methods Phys. Res. A 624.3 (2010), pp. 716–727, 2010.
  21. H. Si, K. Gärtner, and J. Fuhrmann:
    Boundary conforming Delaunay mesh generation
    Comput. Math. and Math. Phys. 50.1 (2010), pp. 38–53.
  22. A. Glitzky and K. Gärtner:
    Existence of bounded steady state solutions to spin-polarized drift-diffusion systems
    SIAM J. Math. Anal. 41.6 (2010), pp. 2489–2513, WIAS Preprint 1357.
  23. K. Gärtner:
    Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids
    SIAM J. Sci. Comput. 31.2 (2009), pp. 1347–1362, WIAS Preprint 1258.
  24. A. Glitzky and K. Gärtner:
    Energy estimates for continuous and discretized electro-reaction–diffusion systems
    Nonlinear Anal. 70.2 (2009), pp. 788–805, WIAS Preprint 1222.
  25. H. Si, K. Gärtner, and J. Fuhrmann:
    Boundary conforming Delaunay mesh generation,
    Numerical Geometry, Grid Generation and Scientific Computing (NUMGRID-2008),
    Russ. Acad. Sci., Dorodnicyn Comput. Cent., Moscow (2008), pp. 230–237.
  26. K. Gärtner:
    DEPFET sensors, a test case to study 3d effects
    J. Comput. Electron. 6.1-3 (2007), pp. 275–278.
  27. K. Gärtner:
    Existence of bounded discrete steady state solutions of the van Roosbroeck system on boundary conforming Delaunay grids
    2007 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 83–84.
  28. K. Gärtner and R. H. Richter:
    DEPFET sensor design using an experimental 3d device simulator
    Nucl. Instrum. Methods Phys. Res. A 568.1 (2006), pp. 12–17.
  29. R. Eymard, J. Fuhrmann, and K. Gärtner:
    A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems
    Numer. Math. 102.3 (2006), pp. 463–495, WIAS Preprint 966.
  30. O. Schenk and K. Gärtner:
    On fast factorization pivoting methods for sparse symmetric indefinite systems
    Electron. Trans. Numer. Anal. 23 (2006), pp. 158–179.
  31. H. Si and K. Gärtner:
    Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations
    Proceedings of the 14th International Meshing Roundtable (2005), pp. 147–163,
  32. H. Gajewski and K. Gärtner:
    A dissipative discretization scheme for a nonlocal phase segregation model
    Z. Angew. Math. Mech. 85.11 (2005), pp. 815–822, WIAS Preprint 1004.
  33. H. Gajewski and K. Gärtner:
    On a nonlocal model of image segmentation
    Z. Angew. Math. Phys. 56 (2005), pp. 572–591, WIAS Preprint 762.
  34. K. Gärtner:
    3d simulations of DEPFET based sensors: algorithms and results
    2005 International Conference on Numerical Simulation of Optoelectronic Devices — NUSOD, pp. 39–40.
  35. J. Divisek, J. Fuhrmann, K. Gärtner, and R. Jung:
    Performance modeling of a direct methanol fuel cell
    J. Electrochem. Soc. 150.6 (2003), pp. A811–A825.
  36. O. Schenk and K. Gärtner:
    Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems
    Parallel Comput. 28.2 (2002), pp. 187–197.
  37. O. Schenk and K. Gärtner:
    Solving unsymmetric sparse systems of linear equations with PARDISO
    Computational Science — ICCS 2002,
    Lect. Notes Comput. Sci. 2330 (2002), pp. 355–363.
  38. H. Gajewski and K. Gärtner:
    Domain separation by means of sign changing eigenfunctions of p-Laplacians
    Appl. Anal. 79.3-4 (2001), pp. 483–501, WIAS Preprint 526.
  39. O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker:
    PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation
    Future Gener. Comput. Syst., 18.1 (2001), pp. 69–78.
  40. O. Schenk, K. Gärtner, and W. Fichtner:
    Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors
    BIT 40.1 (2000), pp. 158–176.
  41. O. Schenk, K. Gärtner, and W. Fichtner:
    Parallel multigrid methods for the continuity equations in semiconductor device simulation
    High Performance Scientific and Engineering Computing,
    Lect. Notes Comput. Sci. Eng. 8 (1999), pp. 325–342.
  42. H. Gajewski and K. Gärtner:
    On the discretization of van Roosbroeck's equations with magnetic field
    Z. Angew. Math. Mech. 76.5 (1996), pp. 247–264.
  43. J. Fuhrmann and K. Gärtner:
    On matrix data structures and the stability of multigrid algorithms,
    Contributions to Multigrid, CWI Tract. Math. Centrum (1994), pp. 55–65.
  44. K. Gärtner:
    On restrictions for discretizations of the simplified linearized van Roosbroeck's equations
    Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices,
    Internat. Ser. Numer. Math. 117 (1994), pp. 185–195.
  45. J. Fuhrmann and K. Gärtner:
    Incomplete factorization and linear multigrid algorithms for the semiconductor device equations,
    Iterative Methods in Linear Algebra (Brussels, 1991) (1992), pp. 493–503.
  46. H. Gajewski and K. Gärtner:
    On the iterative solution of van Roosbroeck's equations
    Z. Angew. Math. Mech. 72.1 (1992), pp. 19–28.
  47. J. Fuhrmann and K. Gärtner:
    A multigrid method for the solution of a convection-diffusion equation with rapidly varying coefficients
    Multigrid Methods, III (Bonn, 1990),
    Internat. Ser. Numer. Math. 98 (1991). pp. 179–190.
  48. K. Gärtner:
    Application of incomplete factorization algorithms in the solution of eigenvalue problems of large matrices,
    Numerical solution of differential equations (Matzlow/Garwitz, 1982),
    Rep. MATH 83-1 (1983), Akad. Wiss. DDR, Berlin, pp. 109–119.

Theses

  • Dr.-Ing., Ingenieurhochschule Zittau: Kraftwerksanlagen und Energieumwandlung.
  • Diploma (Physiker), TU Dresden.

Miscellaneous