Dr.-Ing. Klaus Gärtner

Author profile

Scopus AMS MathSciNet

Selected research articles

  1. K. Gärtner and L. Kamenski:
    Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method,
    Comput. Math. Math. Phys. 59.12 (2019), pp. 1930–1944, arXiv:1905.01738v2.
    Зачем нужны сетки Вороного–Делоне? Основные свойства метода конечных объемов с использованием ячеек Вороного
    Ж. вычисл. матем. и матем. физ. 59.12 (2019), с. 2007–2023, arXiv:1905.01738v2.
  2. K. Gärtner and L. Kamenski:
    Why do we need Voronoi cells and Delaunay meshes?
    Numerical Geometry, Grid Generation and Scientific Computing (NUMGRID-2018),
    Lect. Notes Comput. Sci. Eng. 131 (2019), pp. 45–60, arXiv:1905.01738v1.
  3. K. Gärtner:
    Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions
    J. Comput. Electron. 14.3 (2015), pp. 773–787, WIAS Preprint 2053.
  4. A. Fischer, Th. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky, and R. Scholz:
    Feel the heat: nonlinear electrothermal feedback in organic LEDs
    Adv. Funct. Mater. 24 (2014), pp. 3367–3374, WIAS Preprint 1839.
  5. C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner:
    An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization
    SIAM J. Sci. Comput. 36.2 (2014), pp. C139–C162.
  6. Th. Koprucki and K. Gärtner:
    Discretization scheme for drift-diffusion equations with strong diffusion enhancement
    Opt. Quantum Electron. 45.7 (2013), pp. 791–796., WIAS Preprint 1738.
  7. A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, Th. Koprucki, K. Gärtner, and A. Glitzky,
    Self-heating, bistability, and thermal switching in organic semiconductors
    Phys. Rev. Lett. 110.12 (2013), 126601, WIAS Preprint 1735.
  8. A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, J. Fuhrmann, K. Gärtner, and A. Glitzky,
    Self-heating effects in organic semiconductor crossbar structures with small active area
    Org. Election. 13.11 (2012), pp. 2461–2468, WIAS Preprint 1693.
  9. K. Gärtner, H. Si, A. Rand, and N. Walkington:
    3D Delaunay mesh generation,
    Combinatorial Scientific Computing,
    Chapman & Hall/CRC Comput. Sci. Ser. CRC Press (2012), pp. 299–319
  10. K. Gärtner:
    Charge transport in semiconductors and a finite volume scheme
    Finite Volumes for Complex Applications VI. Problems & Perspectives.
    Springer Proc. Math. 4 (2011), pp. 513–522.
  11. H. Si and K. Gärtner:
    3D boundary recovery by constrained Delaunay tetrahedralization
    Internat. J. Numer. Methods Engrg. 85.11 (2011), pp. 1341–1364, WIAS Preprint 1530.
  12. H. Si, K. Gärtner, and J. Fuhrmann:
    Boundary conforming Delaunay mesh generation
    Comput. Math. and Math. Phys. 50.1 (2010), pp. 38–53.
  13. A. Glitzky and K. Gärtner:
    Existence of bounded steady state solutions to spin-polarized drift-diffusion systems
    SIAM J. Math. Anal. 41.6 (2010), pp. 2489–2513, WIAS Preprint 1357.
  14. K. Gärtner:
    Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids
    SIAM J. Sci. Comput. 31.2 (2009), pp. 1347–1362, WIAS Preprint 1258.
  15. A. Glitzky and K. Gärtner:
    Energy estimates for continuous and discretized electro-reaction–diffusion systems
    Nonlinear Anal. 70.2 (2009), pp. 788–805, WIAS Preprint 1222.
  16. H. Si, K. Gärtner, and J. Fuhrmann:
    Boundary conforming Delaunay mesh generation,
    Numerical Geometry, Grid Generation and Scientific Computing (NUMGRID-2008),
    Russ. Acad. Sci., Dorodnicyn Comput. Cent., Moscow (2008), pp. 230–237.
  17. K. Gärtner:
    DEPFET sensors, a test case to study 3d effects
    J. Comput. Electron. 6.1-3 (2007), pp. 275–278.
  18. R. Eymard, J. Fuhrmann, and K. Gärtner:
    A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems
    Numer. Math. 102.3 (2006), pp. 463–495, WIAS Preprint 966.
  19. O. Schenk and K. Gärtner:
    On fast factorization pivoting methods for sparse symmetric indefinite systems
    Electron. Trans. Numer. Anal. 23 (2006), pp. 158–179.
  20. H. Gajewski and K. Gärtner:
    A dissipative discretization scheme for a nonlocal phase segregation model
    Z. Angew. Math. Mech. 85.11 (2005), pp. 815–822, WIAS Preprint 1004.
  21. H. Gajewski and K. Gärtner:
    On a nonlocal model of image segmentation
    Z. angew. Math. Phys. 56 (2005), pp. 572–591, WIAS Preprint 762.
  22. O. Schenk and K. Gärtner:
    Solving unsymmetric sparse systems of linear equations with PARDISO
    Computational Science — ICCS 2002,
    Lect. Notes Comput. Sci. 2330 (2002), pp. 355–363.
  23. H. Gajewski and K. Gärtner:
    Domain separation by means of sign changing eigenfunctions of p-Laplacians
    Appl. Anal. 79.3-4 (2001), pp. 483–501, WIAS Preprint 526.
  24. O. Schenk, K. Gärtner, and W. Fichtner:
    Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors
    BIT 40.1 (2000), pp. 158–176.
  25. O. Schenk, K. Gärtner, and W. Fichtner:
    Parallel multigrid methods for the continuity equations in semiconductor device simulation
    High Performance Scientific and Engineering Computing,
    Lect. Notes Comput. Sci. Eng. 8 (1999), pp. 325–342.
  26. H. Gajewski and K. Gärtner:
    On the discretization of van Roosbroeck's equations with magnetic field
    Z. Angew. Math. Mech. 76.5 (1996), pp. 247–264.
  27. J. Fuhrmann and K. Gärtner:
    On matrix data structures and the stability of multigrid algorithms,
    Contributions to Multigrid, CWI Tract. Math. Centrum (1994), pp. 55–65.
  28. K. Gärtner:
    On restrictions for discretizations of the simplified linearized van Roosbroeck's equations,
    Internat. Ser. Numer. Math. 117 (1994), pp. 185–195.
  29. J. Fuhrmann and K. Gärtner:
    Incomplete factorization and linear multigrid algorithms for the semiconductor device equations,
    Iterative methods in linear algebra (Brussels, 1991) (1992), pp. 493–503.
  30. H. Gajewski and K. Gärtner:
    On the iterative solution of van Roosbroeck's equations
    Z. Angew. Math. Mech. 72.1 (1992), pp. 19–28.
  31. J. Fuhrmann and K. Gärtner:
    A multigrid method for the solution of a convection-diffusion equation with rapidly varying coefficients,
    Multigrid Methods, III (Bonn, 1990),
    Internat. Ser. Numer. Math. 98 (1991). pp. 179–190.
  32. K. Gärtner:
    Application of incomplete factorization algorithms in the solution of eigenvalue problems of large matrices,
    Numerical solution of differential equations (Matzlow/Garwitz, 1982),
    Rep. MATH 83-1 (1983), Akad. Wiss. DDR, Berlin, pp. 109–119.

Theses

  • Dr.-Ing., Ingenieurhochschule Zittau: Kraftwerksanlagen und Energieumwandlung.
  • Diploma (Physiker), TU Dresden.